
Homework �� Neural networks and face images

������� Machine Learning

Tom Mitchell

Carnegie Mellon University

Due� October ��� ����

�� Introduction

This assignment gives you an opportunity to apply neural network learning to the problem
of face recognition� It is broken into two parts� For the �rst part� which you must do alone�
you will experiment with a neural network program to train a sunglasses recognizer� a face
recognizer� and a pose recognizer� For the second part� which is optional and for extra credit
only� you have the option of working with a group of � or � other students to study some
issue of your own choosing� The face images you will use are faces of students from earlier
Machine Learning classes�

You will not need to do signi�cant amounts of coding for this assignment� and you should
not let the size of this document scare you� but training your networks will take time� It is
recommended that you read the assignment in its entirety �rst� and start early�

���� The face images

The image data can be found in �afs�cs�project�theo���faceimages�faces� This di�
rectory contains �� subdirectories� one for each person� named by userid� Each of these
directories contains several di�erent face images of the same person�

You will be interested in the images with the following naming convention�

�userid� �pose� �expression� �eyes� �scale��pgm

� �userid� is the user id of the person in the image� and this �eld has �� values� an�i�
at		� boland� bpm� ch
f� cheyer� choon� danieln� glickman� karyadi� kawamura� kk
��
megak� mitchell� night� phoebe� saavik� ste�� sz�
� and tammo�

� �pose� is the head position of the person� and this �eld has 
 values� straight� left�
right� up�

�



� �expression� is the facial expression of the person� and this �eld has 
 values� neutral�
happy� sad� angry�

� �eyes� is the eye state of the person� and this �eld has � values� open� sunglasses�

� �scale� is the scale of the image� and this �eld has 	 values� �� �� and 
� � indicates
a full�resolution image 
��� columns � ��� rows�� � indicates a half�resolution image

�
 � ���� 
 indicates a quarter�resolution image 
	� � 	��� For this assignment� you
will be using the quarter�resolution images for experiments� to keep training time to a
manageable level�

If you�ve been looking closely in the image directories� you may notice that some images
have a �bad su�x rather than the �pgm su�x� As it turns out� �� of the �
� images taken
have glitches due to problems with the camera setup� these are the �bad images� Some
people had more glitches than others� but everyone who got �faced� should have at least ��
good face images 
out of the 	� variations possible� discounting scale��

���� Viewing the face images

To view the images� you can use the program xv� This is available as �usr�local�bin�xv
on Andrew machines� and �usr�misc��X���others�bin�xv or �usr�local�bin�xv on CS
machines� xv handles a variety of image formats� including the PGM format in which our
face images are stored� While we won�t go into detail about xv in this document� we will
quickly describe the basics you need to know to use xv�

To start xv� just specify one or more images on the command line� like this�

xv �afs�cs�project�theo���faceimages�faces�glickman�glickman straight happy open ��pgm

This will bring up an X window displaying the face� Clicking the right button in the
image window will toggle a control panel with a variety of buttons� The Dbl Size button
doubles the displayed size of the image every time you click on it� This will be useful for
viewing the quarter�resolution images� as you might imagine�

You can also obtain pixel values by holding down the left button while moving the pointer
in the image window� A text bar will be displayed� showing you the image coordinates and
brightness value where the pointer is located�

To quit xv� just click on the Quit button or type q in one of the xv windows�

���� The neural network and image access code

We�re supplying C code for a three�layer fully�connected feedforward neural network which
uses the backpropagation algorithm to tune its weights� To make life as easy as possible�
we�re also supplying you with an image package for accessing the face images� as well as the

�



top�level program for training and testing� as a skeleton for you to modify� To help explore
what the nets actually learn� you�ll also �nd a utility program for visualizing hidden�unit
weights as images�

The code is located in �afs�cs�project�theo���faceimages�code� Copy all of the �les
in this area to your own directory� and type make� Note� take care to use cp � instead of
cp ��� in order to ensure that you get the Makefile� When the compilation is done� you
should have one executable program� facetrain� Brie�y� facetrain takes lists of image
�les as input� and uses these as training and test sets for a neural network� facetrain can
be used for training and�or recognition� and it also has the capability to save networks to
�les�

The code has been compiled and tested successfully on CS�side Alphas� DecStations� Sun
SPARC��s� and IBM PowerPC�s� and Andrew�side DecStations and Sun SPARC��s� If you
wish to use the code on some other platform� feel free� but be aware that the code has only
been tested on these platforms�

Details of the routines� explanations of the source �les� and related information can be
found in Section �� of this handout�

�� The Assignment

���� Part I �required�

Turn in a short write�up of your answers to the questions found in the following sequence of
initial experiments�

�� Issue the following command in your home directory to obtain the training and test
set data for this assignment�

cp �afs�cs�project�theo���faceimages�trainset���list �

�� The code you have been given is currently set up to learn to recognize the person with
userid glickman� Modify this code to implement a �sunglasses� recognizer� i�e�� train
a neural net which� when given an image as input� indicates whether the face in the
image is wearing sunglasses� or not� Refer to the beginning of Section 	 for an overview
of how to make changes to this code�

	� Train a network using the default learning parameter settings 
learning rate ��	� mo�
mentum ��	� for �� epochs� with the following command�

facetrain �n shades�net �t straightrnd train�list �� straightrnd test��list

�	 straightrnd test	�list �e 
�

facetrain�s arguments are described in Section ��� but a short description is in order
here� shades�net is the name of the network �le which will be saved when training is
�nished� straightrnd train�list� straightrnd test��list� and straightrnd test	�list

	



are text �les which specify the training set 
�� examples� and two test sets 
	
 and ��
examples�� respectively�

This command creates and trains your net on a randomly chosen sample of �� of the
��� �straight� images� and tests it on the remaining 	
 and �� randomly chosen images�
respectively� One way to think of this test strategy is that roughly �

�
of the images


straightrnd test	�list� have been held over for testing� The remaining �

�
have

been used for a train and cross�validate strategy� in which �

�
of these are being used for

as a training set 
straightrnd train�list� and �

�
are being used for the validation

set to decide when to halt training 
straightrnd test��list��


� What code did you modify� What was the maximum classi�cation accuracy achieved
on the training set� How many epochs did it take to reach this level� How about for
the validation set� The test set� Note that if you run it again on the same system
with the same parameters and input� you should get exactly the same results because�
by default� the code uses the same seed to the random number generator each time�
You will need to read Section 	���� carefully in order to be able to interpret your
experiments and answer these questions�

�� Now� implement a ��of��� face recognizer� i�e� implement a neural net that accepts
an image as input� and outputs the userid of the person� To do this� you will need
to implement a di�erent output encoding 
since you must now be able to distinguish
among �� people�� 
Hint� leave learning rate and momentum at ��	� and use �� hidden
units��

�� As before� train the network� this time for ��� epochs�

facetrain �n face�net �t straighteven train�list �� straighteven test��list

�	 straighteven test	�list �e ���

You might be wondering why you are only training on samples from a limited distribu�
tion 
the �straight� images�� The essential reason is training time� If you have access
to a very fast machine 
anything slower than an Alpha or Sun
 may be too slow�� then
you are welcome to do these experiments on the entire set 
replace straight with all

in the command above� Otherwise� stick to the �straight� images�

The di�erence between the straightrnd ��list and the straighteven ��list sets
is that while the former divides the images purely randomly among the training and
test sets� the latter ensures a relatively even distribution of each individual�s images
over the sets� Because we have only � or � �straight� images per individual� failure to
distribute them evenly would result in testing our network the most on those faces on
which it was trained the least�

�� Which parts of the code was it necessary to modify this time� How did you encode
the outputs� What was the maximum classi�cation accuracy achieved on the training
set� How many epochs did it take to reach this level� How about for the validation
and test set�

�� Now let�s take a closer look at which images the net may have failed to classify�






facetrain �n face�net �T �� straighteven test��list �	 straighteven test	�list

Do there seem to be any particular commonalities between the misclassi�ed images�

�� Implement a pose recognizer� i�e� implement a neural net which� when given an image
as input� indicates whether the person in the image is looking straight ahead� up� to
the left� or to the right� You will also need to implement a di�erent output encoding
for this task� 
Hint� leave learning rate and momentum at ��	� and use � hidden units��

��� Train the network for ��� epochs� this time on samples drawn from all of the images�

facetrain �n pose�net �t all train�list �� all test��list

�	 all test	�list �e ���

Since the pose�recognizing network should have substantially fewer weights to update
than the face�recognizing network� even those of you with slow machines can get in on
the fun of using all of the images� In this case� ��� examples are in the training set�
�
� examples are in test�� and ��	 are in test��

��� How did you encode your outputs this time� What was the maximum classi�cation
accuracy achieved on the training set� How many epochs did it take to reach this
level� How about for each test set�

��� Now� try taking a look at how backpropagation tuned the weights of the hidden units
with respect to each pixel� First type make hidtopgm to compile the utility on your
system� Then� to visualize the weights of hidden unit n� type�

hidtopgm pose�net image��lename 
	 
� n

Invoking xv on the image image��lename should then display the range of weights� with
the lowest weights mapped to pixel values of zero� and the highest mapped to ���� If
the images just look like noise� try retraining using facetrain init� 
compile with
make facetrain init��� which initializes the hidden unit weights of a new network
to zero� rather than random values�

�	� Do the hidden units seem to weight particular regions of the image greater than others�
Do particular hidden units seem to be tuned to di�erent features of some sort�

���� Part II� �optional��

Now that you know your way around facetrain� it�s time to have some fun� Form a team
with one or two other students� and pick some interesting topic of your own choice � be
creative�� Run some experiments� and prepare a short write�up of what your group�s idea�
experimental results� and any conclusions you draw 
a few pages should be su�cient�� For
this part of the assignment� your group can turn in a single group writeup�

Some possibilities for experimentation are 
but please don�t let this list limit you in any
way if you want to try something else��

�



� Use the output of the pose recognizer as input to the face recognizer� and see how
this a�ects performance� To do this� you will need to add a mechanism for saving the
output units of the pose recognizer and a mechanism for loading this data into the face
recognizer�

� Learn the location of some feature in the image� such as eyes� You can use xv to tell
you the coordinates of the feature in question for each image� which you can then use
as your target values�

� Take a look at the additional data from an earlier year�s class in

�afs�cs�cmu�edu�project�theo���ml��faces�

What techniques can you employ to train nets to generalize better from one dataset
to the other�

� How do nets perform if trained on more than one concept at once� Do representations
formed for multiple concepts interfere with each other in the hidden layer� or perhaps
augment each other�

� Use the image package� weight visualization utility� and�or anything else you might
have available to try to understand better what the network has actually learned�
Using this information� what do you think the network is learning� Can you exploit
this information to improve generalization�

� Change the input or output encodings to try to improve generalization accuracy�

� Vary the number of hidden units� the number of training examples� the number of
epochs� the momentum and learning rate� or whatever else you want to try� with the
goal of getting the greatest possible discrepancy between train and test set accuracy

i�e�� how badly can you make the network over�t�� and the smallest possible discrep�
ancy 
i�e�� what is the best performance you can achieve��

�� Documentation

The code for this assignment is broken into several modules�

� pgmimage�c� pgmimage�h� the image package� Supports read�write of PGM image �les
and pixel access�assignment� Provides an IMAGE data structure� and an IMAGELIST

data structure 
an array of pointers to images� useful when handling many images��
You will not need to modify any code in this module to complete the as�
signment�

� backprop�c� backprop�h� the neural network package� Supports three�layer fully�
connected feedforward networks� using the backpropagation algorithm for weight tun�
ing� Provides high level routines for creating� training� and using networks� You will
not need to modify any code in this module to complete the assignment�

�



� imagenet�c� interface routines for loading images into the input units of a network� and
setting up target vectors for training� You will need to modify the routine load target�
when implementing the face recognizer and the pose recognizer� to set up appropriate
target vectors for the output encodings you choose�

� facetrain�c� the top�level program which uses all of the modules above to implement
a �TA� recognizer� You will need to modify this code to change network sizes and
learning parameters� both of which are trivial changes� The performance evaluation
routines performance on imagelist�� and evaluate performance�� are also in this
module� you will need to modify these for your face and pose recognizers�

� hidtopgm�c� the hidden unit weight visualization utility� It�s not necessary modify
anything here� although it may be interesting to explore some of the numerous possible
alternate visualization schemes�

Although you�ll only need to modify code in imagenet�c and facetrain�c� feel free to
modify anything you want in any of the �les if it makes your life easier or if it allows you to
do a nifty experiment�

���� facetrain

������ Running facetrain

facetrain has several options which can be speci�ed on the command line� This section
brie�y describes how each option works� A very short summary of this information can be
obtained by running facetrain with no arguments�

�n �network file� � this option either loads an existing network �le� or creates a new one
with the given name� At the end of training� the neural network will be saved to this
�le�

�e �number of epochs� � this option speci�es the number of training epochs which will
be run� If this option is not speci�ed� the default is ����

�T � for test�only mode 
no training�� Performance will be reported on each of the three
datasets speci�ed� and those images misclassi�ed will be listed� along with the corre�
sponding output unit levels�

�s �seed� � an integer which will be used as the seed for the random number generator�
The default seed is �����
 
guess what day it was when I wrote this document�� This
allows you to reproduce experiments if necessary� by generating the same sequence
of random numbers� It also allows you to try a di�erent set of random numbers by
changing the seed�

�



�S �number of epochs between saves� � this option speci�es the number of epochs be�
tween saves� The default is ���� which means that if you train for ��� epochs 
also the
default�� the network is only saved when training is completed�

�t �training image list� � this option speci�es a text �le which contains a list of image
pathnames� one per line� that will be used for training� If this option is not speci�ed� it
is assumed that no training will take place 
epochs � ��� and the network will simply
be run on the test sets� In this case� the statistics for the training set will all be zeros�

�� �test set � list� � this option speci�es a text �le which contains a list of image
pathnames� one per line� that will be used as a test set� If this option is not speci�ed�
the statistics for test set � will all be zeros�

�	 �test set 	 list� � same as above� but for test set �� The idea behind having two
test sets is that one can be used as part of the train�test paradigm� in which training
is stopped when performance on the test set begins to degrade� The other can then
be used as a �real� test of the resulting network�

������ Interpreting the output of facetrain

When you run facetrain� it will �rst read in all the data �les and print a bunch of lines
regarding these operations� Once all the data is loaded� it will begin training� At this point�
the network�s training and test set performance is outlined in one line per epoch� For each
epoch� the following performance measures are output�

�epoch� �delta� �trainperf� �trainerr� �t�perf� �t�err� �t	perf� �t	err�

These values have the following meanings�

epoch is the number of the epoch just completed� it follows that a value of � means that
no training has yet been performed�

delta is the sum of all � values on the hidden and output units as computed during
backprop� over all training examples for that epoch�

trainperf is the percentage of examples in the training set which were correctly classi�ed�

trainerr is the average� over all training examples� of the error function �

�

P

ti � oi�

��
where ti is the target value for output unit i and oi is the actual output value for that
unit�

t�perf is the percentage of examples in test set � which were correctly classi�ed�

t�err is the average� over all examples in test set �� of the error function described above�

t	perf is the percentage of examples in test set � which were correctly classi�ed�

t	err is the average� over all examples in test set �� of the error function described above�

�



���� Tips

Although you do not have to modify the image or network packages� you will need to know
a little bit about the routines and data structures in them� so that you can easily implement
new output encodings for your networks� The following sections describe each of the packages
in a little more detail� You can look at imagenet�c� facetrain�c� and facerec�c to see
how the routines are actually used�

In fact� it is probably a good idea to look over facetrain�c �rst� to see how the training
process works� You will notice that load target�� from imagenet�c is called to set up the
target vector for training� You will also notice the routines which evaluate performance and
compute error statistics� performance on imagelist�� and evaluate performance��� The
�rst routine iterates through a set of images� computing the average error on these images�
and the second routine computes the error and accuracy on a single image�

You will almost certainly not need to use all of the information in the following sections� so
don�t feel like you need to know everything the packages do� You should view these sections
as reference guides for the packages� should you need information on data structures and
routines�

Another fun thing to do� if you didn�t already try it in the last question of the assignment�
is to use the image package to view the weights on connections in graphical form� you will
�nd routines for creating and writing images� if you want to play around with visualizing
your network weights�

Finally� the point of this assignment is for you to obtain �rst�hand experience in working
with neural networks� it is not intended as an exercise in C hacking� An e�ort has been
made to keep the image package and neural network package as simple as possible� If you
need clari�cations about how the routines work� don�t hesitate to ask�

���� The neural network package

As mentioned earlier� this package implements three�layer fully�connected feedforward neural
networks� using a backpropagation weight tuning method� We begin with a brief description
of the data structure� a BPNN 
BackPropNeuralNet��

All unit values and weight values are stored as doubles in a BPNN�

Given a BPNN �net� you can get the number of input� hidden� and output units with
net��input n� net��hidden n� and net��output n� respectively�

Units are all indexed from � to n� where n is the number of units in the layer� To get
the value of the kth unit in the input� hidden� or output layer� use net��input units�k��
net��hidden units�k�� or net��output units�k�� respectively�

The target vector is assumed to have the same number of values as the number of units

�



in the output layer� and it can be accessed via net��target� The kth target value can be
accessed by net��target�k��

To get the value of the weight connecting the ith input unit to the jth hidden unit� use
net��input weights�i��j�� To get the value of the weight connecting the jth hidden unit
to the kth output unit� use net��hidden weights�j��k��

The routines are as follows�

void bpnn initialize�seed�

int seed�

This routine initializes the neural network package� It should be called before any
other routines in the package are used� Currently� its sole purpose in life is to initialize
the random number generator with the input seed�

BPNN �bpnn create�n in� n hidden� n out�

int n in� n hidden� n out�

Creates a new network with n in input units� n hidden hidden units� and n output

output units� All weights in the network are randomly initialized to values in the range
������ ����� Returns a pointer to the network structure� Returns NULL if the routine
fails�

void bpnn free�net�

BPNN �net�

Takes a pointer to a network� and frees all memory associated with the network�

void bpnn train�net� learning rate� momentum� erro� errh�

BPNN �net�

double learning rate� momentum�

double �erro� �errh�

Given a pointer to a network� runs one pass of the backpropagation algorithm� Assumes
that the input units and target layer have been properly set up� learning rate and
momentum are assumed to be values between ��� and ���� erro and errh are pointers
to doubles� which are set to the sum of the � error values on the output units and
hidden units� respectively�

void bpnn feedforward�net�

BPNN �net�

Given a pointer to a network� runs the network on its current input values�

BPNN �bpnn read�filename�

char �filename�

Given a �lename� allocates space for a network� initializes it with the weights stored
in the network �le� and returns a pointer to this new BPNN� Returns NULL on failure�

��



void bpnn save�net� filename�

BPNN �net�

char �filename�

Given a pointer to a network and a �lename� saves the network to that �le�

��	� The image package

The image package provides a set of routines for manipulating PGM images� An image is
a rectangular grid of pixels� each pixel has an integer value ranging from � to ���� Images
are indexed by rows and columns� row � is the top row of the image� column � is the left
column of the image�

IMAGE �img open�filename�

char �filename�

Opens the image given by filename� loads it into a new IMAGE data structure� and
returns a pointer to this new structure� Returns NULL on failure�

IMAGE �img creat�filename� nrows� ncols�

char �filename�

int nrows� ncols�

Creates an image in memory� with the given �lename� of dimensions nrows � ncols�
and returns a pointer to this image� All pixels are initialized to �� Returns NULL on
failure�

int ROWS�img�

IMAGE �img�

Given a pointer to an image� returns the number of rows the image has�

int COLS�img�

IMAGE �img�

Given a pointer to an image� returns the number of columns the image has�

char �NAME�img�

IMAGE �img�

Given a pointer to an image� returns a pointer to its base �lename 
i�e�� if the full �le�
name is �usr�joe�stuff�foo�pgm� a pointer to the string foo�pgm will be returned��

int img getpixel�img� row� col�

IMAGE �img�

int row� col�

Given a pointer to an image and row�column coordinates� this routine returns the
value of the pixel at those coordinates in the image�

��



void img setpixel�img� row� col� value�

IMAGE �img�

int row� col� value�

Given a pointer to an image and row�column coordinates� and an integer value as�
sumed to be in the range ��� ����� this routine sets the pixel at those coordinates in the
image to the given value�

int img write�img� filename�

IMAGE �img�

char �filename�

Given a pointer to an image and a �lename� writes the image to disk with the given
�lename� Returns � on success� � on failure�

void img free�img�

IMAGE �img�

Given a pointer to an image� deallocates all of its associated memory�

IMAGELIST �imgl alloc��

Returns a pointer to a new IMAGELIST structure� which is really just an array of
pointers to images� Given an IMAGELIST �il� il��n is the number of images in the
list� il��list�k� is the pointer to the kth image in the list�

void imgl add�il� img�

IMAGELIST �il�

IMAGE �img�

Given a pointer to an imagelist and a pointer to an image� adds the image at the end
of the imagelist�

void imgl free�il�

IMAGELIST �il�

Given a pointer to an imagelist� frees it� Note that this does not free any images to
which the list points�

void imgl load images from textfile�il� filename�

IMAGELIST �il�

char �filename�

Takes a pointer to an imagelist and a �lename� filename is assumed to specify a �le
which is a list of pathnames of images� one to a line� Each image �le in this list is
loaded into memory and added to the imagelist il�

��
� hidtopgm

hidtopgm takes the following �xed set of arguments�

hidtopgm net��le image��le x y n

��



net��le is the �le containing the network in which the hidden unit weights are to be found�

image��le is the �le to which the derived image will be output�

x and y are the dimensions in pixels of the image on which the network was trained�

n is the number of the target hidden unit� n may range from � to the total number of
hidden units in the network�

���� outtopgm

outtopgm takes the following �xed set of arguments�

outtopgm net��le image��le x y n

This is the same as hidtopgm� for output units instead of input units� Be sure you specify
x to be � plus the number of hidden units� so that you get to see the weight w� as
well as weights associated with the hidden units� For example� to see the weights for
output number � of a network containing 	 hidden units� do this�

outtopgm pose�net pose�out��pgm 
 � �

net��le is the �le containing the network in which the hidden unit weights are to be found�

image��le is the �le to which the derived image will be output�

x and y are the dimensions of the hidden units� where x is always � � the number of hidden
units speci�ed for the network� and y is always ��

n is the number of the target output unit� n may range from � to the total number of
output units for the network�

�	


